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Abstract New expressions for the mass burning rate are derived from a recently introduced flamelet model using
integral analysis. The results are compared with well-known expressions, based on large-activation-energy asympt-
otics. There is no restriction on Lewis numbers and the expressions reduce to the same results as found earlier with
asymptotic techniques for Lewis numbers close to 1. From our analysis it appears that the burned edge of a stretched
flamelet is most appropriate to determine the mass burning rate. The consequences for experimental and numerical
studies are investigated.
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1 Introduction

In gas mixtures of fuel and oxydizer (air), combustion generally takes place in thin layers, i.e., premixed flame fronts
propagate relative to the unburned mixture with a well-defined velocity, referred to as the laminar burning velocity.
Its magnitude is called the laminar burning speed sL and is a key parameter in combustion science. The hot, reacted
gases preheat the unburned mixture at the leading-edge molecular-diffusion processes (preheat zone) up to a point
where the temperature has increased to a high-enough value that chemical reactions of the combustion process can
take place (reaction zone). This reaction zone is usually much thinner than the preheat zone, which is generally of
the order of 1 mm for hydrocarbon–air flames. If the flame front has a planar shape and the flow enters the front as
a laminar, homogeneous plug-type flow, the one-dimensional system propagates with the laminar burning speed s0

L
relative to the unburned mixture. In general, however, it is very difficult to create this situation in practice. Flames
often display curvature effects and the flow is often strained ahead of the flame, e.g., due to the burner geometry
or turbulent structures in the flow. This leads effectively to what is referred to as flame-stretch. The flame-stretch
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68 L. P. H. de Goey, J. H. M. ten Thije Boonkkamp

rate is a parameter which describes the relative rate of change of flame surface area due to flame curvature, flow
straining and flame-propagation effects.

It is well known that flame stretch plays an important role in the propagation, stability and structure of premixed
flames, because the burning speed is sensitive to the local stretch rate. Stretch effects were first studied by Karlovitz
et al. [1], Lewis and von Elbe [2, Sect. V.5 and V.6] and Markstein [3, Chapt. C] to investigate flame extinction,
flame stabilization and flame-front instability. Since these early publications, significant progress has been made
in the understanding of flame stretch and in particular the structure, propagation and dynamics of stretched flames
has been studied in numerous papers using large-activation-energy-asymptotics (LAEA); see e.g. [4–6]. Clavin
[7] and Clavin and Williams [8] rigorously derived expressions for the mass burning rate using LAEA for flames
described by simple chemistry and Lewis numbers close to 1. This theory has been used, for instance, in laminar
flamelet models for turbulent premixed flames; see e.g. [9]. Chung and Law [10] used another approach, the integral
analysis (IA), to study stretched flames. Identical phenomena are predicted with their theory, although the resulting
expressions are different. The LAEA and IA theories have never been compared thoroughly so far.

Using the IA rigorously, de Goey et al. [11–13] and ten Thije Boonkkamp et al. [14,15] studied the mass burning
rate of stretched flames with multiple-species transport and chemistry. They introduced a mass-based stretch field
for spatially resolved flames and derived expressions for the mass burning rate, containing integrals of the stretch
field, describing the flame response. There is no restriction on the Lewis numbers. In the present paper we will use
this approach to show that LAEA results, first found by Joulin and Clavin [16], are recovered with the IA method to
lowest order in the Zeldovich number for flat, weakly strained flames when density variations are neglected and for
Lewis numbers close to 1. Furthermore, the same results as derived by Clavin and Williams [7,8] are found to lowest
order in the Zeldovich number when density variations due to gas expansion are included, again for Lewis numbers
close to 1. Finally, from a theoretical and numerical investigation of a spatially resolved stretched flame, it is shown
that the mass burning rate at the burned edge of the flame is most accurate for describing flame propagation. This is
very important for a quantitative interpretation of experimental and numerical data of stretched flames. If a position
different from the burned flame edge is chosen to derive the mass burning rate, correction terms have to be used,
which are also derived in this paper.

The paper is organized as follows. In Sect. 2, we summarize the flamelet model of de Goey and ten Thije
Boonkkamp. General expressions for the mass burning rate mb in the burned gases of stretched flames are presented
in Sect. 3. These expressions have been applied successfully in the last few years to analyze and describe strong
stretch effects in turbulent flames for unit Lewis numbers [17] and in weakly stretched flames governed by multiple-
species chemistry and transport with non-unit Lewis numbers [18]. In Sect. 4, we study the mass burning rate mb

for the case of flat weakly strained stagnation flames without gas expansion, described by a one-step irreversible
reaction. Variations in the density caused by gas expansion are studied in the subsequent section. The mass burning
rate mu in the unburned gases is studied in Sect. 6. Different results are found for Markstein numbers in either
burned or unburned gases. In Sect. 7 our analysis shows that Markstein numbers for the burned gases previously
found by Joulin and Clavin [16] and Clavin [8] are reproduced for Lewis numbers close to 1. For the unburned
gases, the Markstein number of Clavin and Williams [7] is also recovered for Lewis numbers close to 1. A clear
physical picture of how mu and mb are to be interpreted inside the flame structure is also presented in Sect. 7.

2 Flamelet model for premixed stretched flames

In this section we summarize the flamelet model for premixed, stretched flames, as introduced in our previous
papers [11,12,14].

We define a flame as a region in space where a suitable progress variable Y assumes values between the unburned
(Yu) and burned (Yb) values, in other words, it consists of the preheat zone and the reaction zone. For Y we may
take, e.g., one of the species mass fractions Yi or the temperature T , provided ∇Y �= 0 everywhere in the flame. In
this paper we choose Y = T . We introduce flame surfaces as isotherms, i.e., surfaces where T (x, t) = Const, and
define a curvilinear coordinate system ξ = (ξ1, ξ2, ξ3) by the relations
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Mass burning rate of premixed stretched flames 69

T (x1, x2, x3, t) = T (ξ1),
∂x
∂ξ1 · ∂x

∂ξα
= 0 (α = 2, 3) for Tu ≤ T ≤ Tb, (2.1)

i.e., the coordinate surfaces ξ1 = Const coincide with flame surfaces and the ξ1-coordinate lines are orthogo-
nal to the ξα-coordinate lines (α = 2, 3). Note that the ξ1-coordinate is not uniquely defined by the relations in
(2.1), since these also hold for f (ξ1) with f a sufficiently smooth and monotone function. In each flame surface,
(ξ2, ξ3) is a curvilinear coordinate system, not necessarily orthogonal, which will not be further specified. For time-
dependent flames, the flame surfaces will move in the spatial domain with velocity vf = v+sLn, where v is the flow
velocity, sL the laminar burning speed and n the unit normal directed towards the unburned gas mixture, resulting in
a time-dependent coordinate system ξ = ξ(x, t). Moreover, we introduce the variable τ as the time corresponding
to the curvilinear coordinate system. Obviously, τ = t .

In the flamelet model that follows, we use the mass-based definition of the stretch rate K [13], which is an
extension of the usual definition [19] and applicable to flames of finite thickness. It is defined as

K := 1

M

dM

dt
with M(t) :=

∫
�(t)

ρ dV, (2.2)

where d/dt := ∂/∂t + vf ·∇ is the time derivative when following the flame surfaces and where ρ is the density of
the gas mixture, i.e., K is the fractional rate of change of the mass M(t) contained in a small volume �(t) in the
flame, moving with velocity vf . Applying the Reynolds transport theorem [20, pp. 84–85] to (2.2), we obtain the
following expression for K:

ρK = ∂ρ

∂t
+ ∇ ·(ρvf

)
. (2.3)

Formulated in (ξ , τ )-variables, the expression for K reads

K = 1√
g

∂

∂τ

(√
g
) + 1

ρ

∂ρ

∂τ
, (2.4)

where
√

g is the Jacobian of the coordinate transformation x �→ ξ , given by

√
g = h1σ, h1 :=

∣∣∣ ∂x
∂ξ1

∣∣∣, σ :=
∣∣∣ ∂x
∂ξ2 × ∂x

∂ξ3

∣∣∣. (2.5)

Clearly, dV := √
g dξ1dξ2dξ3 is the volume element in the ξ -coordinate system, dS := σ dξ2dξ3 is the area

element on a flame surface ξ1 = Const and ds := h1 dξ1 is the arc-length element along a ξ1-coordinate line.
Apart from the usual terms related to flame curvature and flow straining, relation (2.4) for K incorporates additional
terms, e.g., due to flame thickness variations. Note that K is a scalar field, defined in the entire flame zone, whereas
in other theories the stretch rate is restricted to a single flame surface.

The set of governing equations for premixed flames can be classified in the following three groups, i.e., first, the
flamelet equations for the combustion variables Yi , T and the mass burning rate m := ρsL, describing transport
and chemistry in the flame, second, the momentum equations coupled with the flamelet equations for the specific
enthalpy h and element mass fractions Zj , describing flow and mixing without chemical reactions, and third, a
kinematic equation describing the motion of the flame. We have derived the first system of equations by rewriting the
corresponding conservation equations in terms of the curvilinear coordinate system ξ and inserting expression (2.3)
for the stretch rate; for more details see e.g. [12,21]. This way we obtain the following set of quasi-one-dimensional
flamelet equations
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∂

∂s

(
σm

) = −σρK, (2.6a)

∂

∂s

(
σmYi

) − 1

Lei

∂

∂s

(
σ

λ

cp

∂Yi

∂s

)
= σ(ωi − ρKYi), (i = 1, . . . , Ns), (2.6b)

∂

∂s

(
σmT

) − 1

cp

∂

∂s

(
σλ

∂T

∂s

)
= σ(ωT − ρKT ), ωT := −1

cp

Ns∑
i=1

hiωi. (2.6c)

Other variables/parameters in (2.6) are the number of different species Ns, the species reactions rates ωi , the temper-
ature source term ωT , the thermal conductivity λ, the specific heat (at constant pressure) cp and the Lewis numbers
Lei (assumed to be constant). In the derivation of (2.6) we have assumed that conduction and diffusion fluxes along
the flame surfaces are negligible compared to the stretch terms, proportional to K , which is justified in the so-called
flamelet combustion regime where chemistry is fast compared to the flow time scales. We further assumed that all
specific heats are equal and constant, i.e., cp,i = cp. The set has to be closed with an equation of state, which for
constant ambient pressure pamb, describing low-Mach-number deflagrations, may be written as

ρRT

W
= pamb,

1

W
=

Ns∑
i=1

Yi

Ws,i
, (2.7)

with R the universal gas constant, W the mean molecular weight of the mixture and Ws,i the species molecular
weights.

Since the mass burning rate depends on the enthalpy and element composition in the reaction layer [12], we have
to take into account the flamelet equations for the specific enthalpy h and the mass fractions Zj of the Ne elements
involved. Recall, that these variables are defined by

h :=
Ns∑
i=1

hiYi, hi = hi,ref +
∫ T

Tref

cp,i(T
′) dT ′, Zj :=

Ns∑
i=1

wj,iYi, (j = 1, . . . , Ne), (2.8)

where hi , hi,ref and cp,i are the specific enthalpy, the specific enthalpy of formation at reference temperature Tref

and the specific heat (at constant pressure), respectively, of species i. Moreover, the coefficients wi,j are defined
by wj,i := We,jµj,i/Ws,i , with We,j the molecular weight of element j and µj,i the number of atoms of element
j in species i. Analogous to the derivation of (2.6) we find

∂

∂s

(
σmh

) − ∂

∂s

(
σ

λ

cp

∂h

∂s

)
−

Ns∑
i=1

( 1

Lei

− 1
) ∂

∂s

(
σ

λ

cp

hi

∂Yi

∂s

)
= −σρKh, (2.9a)

∂

∂s

(
σmZj

) − ∂

∂s

(
σ

λ

cp

∂Zj

∂s

)
−

Ns∑
i=1

( 1

Lei

− 1
)
wj,i

∂

∂s

(
σ

λ

cp

∂Yi

∂s

)
= −σρKZj , (j = 1, . . . , Ne). (2.9b)

Note that the flamelet equations (2.9) do not contain a chemical source term, and for that reason we refer to h and
Zj as the conserved variables. Moreover, the set of equations (2.9b) is of course not independent of (2.6b).

3 Mass burning rate: the general case

We derive a general expression for the mass burning rate mb at the burned side of the flame. This mass burning rate
depends on the conserved variables ψ := (h, Zj ) in the burned mixture, which we therefore determine first from
the corresponding flamelet equations.
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Mass burning rate of premixed stretched flames 71

Suppose, σ = σ(s) and K = K(s) are given along an s-coordinate line. Integrating the flamelet equations (2.6a)
and (2.9) across the flame, we obtain the following integral balances

(
σm

)
b − (

σm
)

u = −
∫ sb

su

σ(s)ρ(s)K(s) ds, (3.1a)

(
σm

)
b(hb − hu) = −

∫ sb

su

σ(s)ρ(s)K(s)(h(s) − hu) ds, (3.1b)

(
σm

)
u(Zj,b − Zj,u) = −

∫ sb

su

σ(s)ρ(s)K(s)(Zj (s) − Zj,u) ds, (j = 1, . . . , Ne), (3.1c)

where we have assumed that all diffusive/conductive fluxes vanish at the unburned (at s = su) and burned (at
s = sb) sides of the flame. The subscripts b and u denote the value of the corresponding variable in the burned
and unburned gas, respectively. For the special case of a stretchless flame, i.e., K = 0, we obtain h0

b = h0
u and

Z0
j,b = Z0

j,u (j = 1, . . . , Ne), where the superscript 0 indicates that the variable is considered to be the solution
of the corresponding stretchless flamelet equation. Using the expressions for h and Zj in (2.8), we can derive the
following formulae for 
h := hb − hu and 
Zj := Zj,b − Zj,u:

(
1 + KaT ,b

)

h = −

Ns∑
i=1

(Kai,b

Lei

− KaT ,b

)
hi,ref

(
Yi,b − Yi,u

)
, (3.2a)

(
1 + KaT ,b

)

Zj = −

Ns∑
i=1

(Kai,b

Lei

− KaT ,b

)
wj,i

(
Yi,b − Yi,u

)
, (j = 1, . . . , Ne), (3.2b)

where the Karlovitz integrals KaT ,b and Kai,b are defined by, respectively,

KaT ,b := 1

(σm)b

∫ sb

su

σ(s)ρ(s)K(s)T̃ (s) ds, (3.3a)

Kai,b := Lei

(σm)b

∫ sb

su

σ(s)ρ(s)K(s)Ỹi(s) ds, (i = 1, . . . , Ns). (3.3b)

In (3.3) we introduced the normalized variables T̃ (s) and Ỹi (s), defined by

f̃ (s) := f (s) − fu

fb − fu
, (f = Yi, T ). (3.4)

Clearly, 0 = f̃u ≤ f̃ (s) ≤ f̃b = 1 for su ≤ s ≤ sb. Thus, KaT ,b is the weighted mass-flow rate σ(s)ρ(s)K(s)T̃ (s)

along the flame surfaces, integrated across the flame and scaled with the normal mass flow rate (σm)b; a similar
interpretation holds for Kai,b.

Next, we will derive an expression for the mass burning rate mb. Consider the flamelet equation (2.6c) for the
temperature, which can be written in the symbolic form

A − ∂C

∂s
= S, (3.5a)

with A, C and S the advection, conduction and chemical source terms, respectively, defined by

A := ∂

∂s

(
σmT

) + σρKT, C := σ
λ

cp

∂T

∂s
, S := σωT , (3.5b)

where we have assumed that cp = Const. The first term in A describes advection in the s-direction and the second
term, i.e., the stretch term σρKT , advection along the flame surfaces. To find the first integral of equation (3.5a) we
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multiply it by C. Integrating the resulting equation across the flame from s = su to s = sb and taking into account
that the conduction fluxes vanish there, we obtain

∫ sb

su

A(s)C(s) ds =
∫ sb

su

S(s)C(s) ds. (3.6)

Substituting the appropriate expressions from (3.5b) and taking T as the integration variable, the second integral
can be rewritten as

∫ sb

su

S(s)C(s) ds =
∫ Tb

Tu

σ 2 λ

cp

ωT dT . (3.7)

In order to determine the first integral in (3.6), we approximate C by integrating equation (3.5a) over the preheat
zone and neglecting the source term S. This way we obtain

∫ sb

su

A(s)C(s) ds ≈
∫ sb

su

A(s)
[ ∫ s

su

A(v) dv
]

ds = 1

2

[ ∫ sb

su

A(s) ds

]2

. (3.8)

This approximation of C is justified since the reaction zone is usually much thinner than the preheat zone, so that the
major contribution to the integral of A(s)C(s) in (3.6) comes from the preheat zone. In fact, relation (3.8) is exact
when the thickness of the reaction zone goes to zero for infinite activation energy, which we therefore assume in the
following. Our approach is then equivalent to large-activation-energy asymptotics to determine the mass burning
rate; see [22]. Next, substituting the expression for A in (3.5b) and using the relation (3.1a) we find

∫ sb

su

A(s) ds = (
1 + KaT ,b

)(
σm

)
b(Tb − Tu), (3.9)

with the Karlovitz integral KaT ,b defined in (3.3a). Combining (3.6–3.9) we obtain the following expression for the
mass burning rate mb in the burned gas mixture

(
1 + KaT ,b

)(
σm

)
b = F(hb, Zq,b), (3.10)

where the function F(hb, Zq,b) is defined by

F(hb, Zq,b) := 1

Tb − Tu

√
2

∫ Tb

Tu

σ 2 λ

cp

ωT dT . (3.11)

In [12,21] we have explained that F should be considered a function of the state vector ψb = (hb, Zj,b) in the
burned gas mixture. Note that for the special case of a stretchless flame with infinitely thin reaction zone we have(
σm0

)
b = F(h0

b, Z
0
j,b).

Next, we compare the mass burning rates for a stretched and a stretchless flame. For a given field σ = σ(s),
applying relation (3.10) for K �= 0 and K = 0, respectively, we can derive the following expression

(
1 + KaT ,b

)
mb(ψb) = m0

b(ψb), (3.12)

where we have explicitly denoted the dependence of mb and m0
b on the vector ψb. Note that the variable m0

b(ψb) in
the right-hand side of (3.12) is the mass burning rate of a stretchless flame, which must be evaluated as a function of
the state vector ψb of a stretched flame. In the derivation of (3.12) we have assumed, first, that the reaction zone is
infinitely thin and, second, that the conductive flux vanishes at the burned and unburned sides of the flame. There are

123



Mass burning rate of premixed stretched flames 73

no other assumptions introduced and the relations (3.2), (3.3) and (3.12) together describe the effect of flame stretch
and preferential diffusion on the mass burning rate of premixed flames. There is in principle no restriction on the
stretch rate, curvature or reaction mechanism. It has been shown in a number of recent publications that this model
accurately describes these influences for strongly stretched turbulent flames, modeled using DNS including reduced
chemistry in the form of the flamelet-generated manifold technique and unit Lewis numbers [17,23]. Furthermore,
it was recently observed that the model also successfully predicts stretch-related phenomena in weakly stretched
methane and propane flames, modelled using complex chemistry in combination with non-unit Lewis numbers [18].

In the following we restrict ourselves to weak stretch because existing theories based on LAEA are restricted to
weak stretch. Then, taking into account that m0

b = m0
b(ψ

0
b), hb = h0

b+
h and Zj,b = Z0
j,b+
Zj (j = 1, . . . , Ne),

we can expand m0
b(ψb) in a Taylor series, to obtain

mb − m0
b

m0
b

= −KaT ,b + 
h
∂

∂hb

(
log m0

b

) +
Ne∑
j=1


Zj

∂

∂Zj,b

(
log m0

b

) + h.o.t. (3.13)

Expression (3.13) is only applicable to weakly stretched flames, i.e., K is small enough to neglect second- (and
higher-) order terms in the Karlovitz integrals; see (3.2) and (3.3). Otherwise, we can use both expressions (3.12)
and (3.13) for arbitrary flames with multiple-species chemistry and transport. Thus, we do not have to impose any
restrictions on the Lewis numbers, unlike in asymptotic theories, where |Lei − 1| are assumed to be small (of the
order of the reciprocal Zeldovich number).

Summarizing, the derivation of an expression for the mass burning rate requires the following steps. First, we
have to solve the flamelet equations (2.6) for the normalized combustion variables Ỹi (s) and T̃ (s), either analyti-
cally or numerically. In the following sections, we will use analytical expressions for Ỹ 0

i (s) and T̃ 0(s), assuming
constant coefficients. Second, we have to compute the Karlovitz integrals in (3.3). With regard to the density in these
integrals, we distinguish two case, i.e., constant density and variable density. Third, we determine from (3.2) the
differences 
h and 
Zj due to differential diffusion and flame stretch. Finally, assuming that K is small enough
to neglect higher-order terms, we have to evaluate expression (3.13).

4 Mass burning rate: the constant-density approximation

We will elaborate the formulae (3.2), (3.3) and (3.13) for the special case of a lean stagnation flame in a constant-
density flow, thus ignoring expansion of the gas mixture due to combustion. So, consider a model flame determined
by a one-step irreversible reaction F → P , with one rate-determining lean species F . The main assumptions are:

I The flame is flat, i.e., σ(s) = 1.
II Both species have the same Lewis number, i.e., LeF = LeP = Le.

III The thermal conductivity λ and the specific heat cp are constant.
IV The flame is weakly stretched.
V The density is constant, i.e., ρ(s) = Const = ρ0

b .
VI The reaction zone is infinitely thin and located at s = sb = 0 and the preheat zone extends to infinity, i.e.,

su → −∞.

As a consequence of assumption IV, we can neglect the higher-order terms in (3.13) and replace the combustion
variables in (3.2) and (3.3) by their stretchless counterparts. Moreover, we can prove that in the preheat zone K(s)

is nearly constant and equal to the applied strain rate a; see the Appendix. Therefore, we take K(s) = a in the
preheat zone.

First, we solve the stretchless flamelet equations (2.6) for the combustion variables T̃ 0(s), Ỹ 0
F (s) and Ỹ 0

P (s).
Note that m0(s) = Const = m0

u = m0
b = m0. Since the reaction zone is considered infinitely thin, we can replace

the thermal/chemical source terms by delta functions, i.e., ωT = Qδ(s), where the coefficient Q should be chosen
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Fig. 1 The normalized variables T̃ 0(s) and Ỹ 0
F (s), for Le = 0.7,

as a function of the dimensionless coordinate η(s)
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Fig. 2 The normalized variables T̃ 0(s) and ρ̂0(s) := 1− ρ̃0(s),
for θ = 5, as a function of the dimensionless coordinate η(s)

such that T (s) remains bounded for s → ∞, and likewise for ωi . This way, we obtain in the preheat zone s < 0
the solution

T̃ 0(s) = eη(s), Ỹ 0
F (s) = Ỹ 0

P (s) = eLe η(s), η(s) := s

δf
, δf := λ

m0cp

, (4.1)

where η(s) is the scaled coordinate in the preheat zone and δf is the thermal thickness of the stretchless flame. On
the other hand, in the burned gas mixture, we have T̃ 0(s) = Ỹ 0

F (s) = Ỹ 0
P (s) = 1, with s > 0 the usual Cartesian

coordinate; see Fig. 1.
Substituting the stretchless solution (4.1) in (3.3), we obtain the following expressions for the Karlovitz integrals

KaT ,b = KaF ,b = KaP,b = Kab, Kab := aδfρ
0
b

m0 , (4.2)

where Kab is the usual Karlovitz number at the burned side of the flame.
Next, we have to compute the differences 
h and 
Zj . Since the one-step reaction F → P involves only one

element, its mass fraction Z has to be constant, i.e., Z(s) = Const, and consequently all 
Zj -terms in (3.13) cancel.
Taking into account that F and P have the same Lewis number and Karlovitz integral, we can write the 
h-term as


h = (
hF ,refY

0
F ,u − hP,refY

0
P,b

)( 1

Le
− 1

)
Kab + O(

Ka2
b

)

= cp

(
T 0

b − T 0
u

)( 1

Le
− 1

)
Kab + O(

Ka2
b

)
. (4.3)

The second equality in (4.3) follows readily from the definition of h in (2.8) and the relation 
h0 = 0. For the mass
burning rate m0 we adopt the same model as used by Barenblatt et al. [24], i.e.,

m0 = m0(Tb
) = Const e−Ta/(2Tb), (4.4)

where Ta := Ea/R is the activation temperature and Ea the activation energy. Combining (3.13), (4.2)–(4.4) and
applying the chain rule

∂

∂hb

(
log m0) = 1

cp

∂

∂Tb

(
log m0),

we get the following relation
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mb − m0

m0 = −Kab + cp

(
T 0

b − T 0
u

)( 1

Le
− 1

)
Kab

Ta

2
(
T 0

b

)2

1

cp

+ O(
Ka2

b

)

= −
(

1 + Ze

2

(
1 − 1

Le

))
Kab + O(

Ka2
b

)
, (4.5)

where Ze := Ta(T
0
b − T 0

u )/((T 0
b )2) is the Zeldovich number [25, p. 155]. Finally, we can rewrite relation (4.5) in

the equivalent form

mb − m0

m0 = −MbKab + O(
Ka2

b

)
, (4.6)

where Mb is the Markstein number given by

Mb = 1 + Ze

2

(
1 − 1

Le

)
. (4.7)

The Markstein number is a measure of the relative change in the mass burning rate mb due to flame stretch. The
second term in Mb accounts for preferential diffusion when Le �= 1.

5 Mass burning rate: variable density

In a similar way as in Sect. 4, we derive an expression for the mass burning rate mb, but now for variable density,
thus accounting for gas expansion due to combustion. All assumptions remain valid, except assumption V. Instead,
we determine the density from the equation of state (2.7). Consequently, we have the following expression for the
density in the preheat zone

ρ0(s) = ρ0
bT 0

b

T 0(s)
= ρ0

b
θ + 1

1 + θT̃ 0(s)
, θ := T 0

b − T 0
u

T 0
u

= ρ0
u − ρ0

b

ρ0
b

; (5.1)

see Fig. 2. In the derivation of (5.1) we have used that ρ0(s)T 0(s) = Const = ρ0
bT 0

b , which is a consequence of the
equation of state (2.7) and the assumption that W = Const. The parameter θ is the thermal-expansion coefficient.
Obviously, in the burned gas mixture ρ(s) = ρ0

b . Thus, we can interpret the preheat zone as a layer of variable den-
sity connecting the incompressible unburned and burned gas mixtures. The expressions in (4.1) for the combustion
variables in the preheat zone still hold.

Substituting the formulae for ρ0(s) and T̃ 0(s) in (3.3a), we obtain the following expression for the Karlovitz
integral KaT ,b

KaT ,b = Kab(θ + 1)
log(θ + 1)

θ
. (5.2)

Likewise, substituting the expressions for ρ0(s), T̃ 0(s) and Ỹ 0
F (s) in (3.3b), we obtain for KaF ,b the expression

KaF ,b

Le
= Kab(θ + 1)

∫ 1

0

νLe−1

1 + θν
dν. (5.3)

The integral in (5.3) can be expressed in terms of hypergeometric functions; see e.g. [26, Sect. 15.3, formula 15.3.1].
Note that, in the limit for θ → 0, the expressions for KaT ,b and KaF ,b reduce to the ones in (4.2).
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Next, we have to compute the enthalpy difference 
h. Analogous to the derivation in the previous section, we
find


h = cp

(
T 0

b − T 0
u

)(KaF ,b

Le
− KaT ,b

)
+ O(

Ka2
b

)
, (5.4)

with KaT ,b and KaF ,b given in (5.2) and (5.3), respectively. Using relation (4.4) for the mass burning rate m0, we
get the following generalization of (4.5),

mb − m0

m0 = −KaT ,b + Ze

2

(KaF ,b

Le
− KaT ,b

)
+ O(

Ka2
b

)
. (5.5)

Applying integration by parts to the integral in (5.3) and subsequently substituting the resulting expression for
KaF ,b/Le − KaT ,b in (5.5), we obtain the familiar relation (4.6), with the Markstein number Mb given by

Mb = (θ + 1)
log(θ + 1)

θ
+ Ze

2
(Le − 1)

θ + 1

θ

∫ 1

0
νLe−2 log(1 + θν) dν. (5.6)

The first term in Mb describes the effect of gas expansion on the mass burning rate mb and the second term the
effect of preferential diffusion. Note that for θ → 0 expression (5.6) reduces to (4.7).

6 The mass burning rate in the unburned mixture

In the previous sections we derived expressions for the mass burning rate mb at the burned side of the flame, i.e.,
at the reaction layer. Alternatively, in this section we derive a model for the mass burning rate mu in the unburned
gas mixture, equivalent to the model for mb presented in Sect. 3. First, we give alternative expressions for 
h and

Zj . Analogous to the derivation of (3.2), we find

(
1 + KaT ,u

)

h = −

Ns∑
i=1

(Kai,u

Lei

− KaT ,u

)
hi,ref

(
Yi,b − Yi,u

)
, (6.1a)

(
1 + KaT ,u

)

Zj = −

Ns∑
i=1

(Kai,u

Lei

− KaT ,u

)
wj,i

(
Yi,b − Yi,u

)
, (j = 1, . . . , Ne), (6.1b)

where the Karlovitz integrals KaT ,u and Kai,u are defined by, respectively,

KaT ,u := −1

(σm)u

∫ sb

su

σ(s)ρ(s)K(s)(1 − T̃ (s)) ds, (6.2a)

Kai,u := −Lei

(σm)u

∫ sb

su

σ(s)ρ(s)K(s)(1 − Ỹi (s)) ds, (i = 1, . . . , Ns), (6.2b)

i.e., the Karlovitz integral KaT ,u is the weighted mass-flow rate σ(s)ρ(s)K(s)(1 − T̃ (s)), integrated across the
flame and scaled with the normal mass-flow rate −(σm)u and likewise for Kai,u. From their definitions and the
flamelet equation (2.6a), we can derive the following relations between the Karlovitz integrals KaT ,b, Kai,b for the
burned side of the flame, and KaT ,u, Kai,u for the unburned side, i.e.,

(σm)b(KaT ,b + 1) = (σm)u(KaT ,u + 1), (6.3a)

(σm)b(Kai,b + Lei ) = (σm)u(Kai,u + Lei ). (6.3b)
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Next, equivalent to relation (3.12), we have the following relation for mu,

(
1 + KaT ,u

)
mu(ψb) = m0

u(ψb), (6.4)

where we again assume that m0
u depends on the conserved variables ψb in the burned gas mixture. For weakly

stretched flames, we can expand m0
u(ψb) in a Taylor series, to find

mu − m0
u

m0
u

= −KaT ,u + 
h
∂

∂hb

(
log m0

u

) +
Ne∑
j=1


Zj

∂

∂Zj,b

(
log m0

u

) + h.o.t. (6.5)

Summarizing, the model for mu consists of either relation (6.4) or (6.5), coupled with (6.1) and (6.2) to determine
the differences 
h and 
Zj .

In the following, we restrict ourselves to the variable-density case of the stagnation flame of the previous sections,
and use the stretchless variables in (4.1) to derive expressions for the Karlovitz integrals and for the difference 
h.
Straightforward substitution of (4.1) and (5.1) in (6.2) would lead to divergent Karlovitz integrals for su → −∞.
The reason for this divergence is that (1 − T̃ (s))K(s) �= 0 in the entire flame and does not tend to 0 for s → −∞.
Consequently, the mass burning rate mu becomes unbounded for su → −∞, in agreement with the flamelet
equation (2.6a). To remedy this problem, we cut off the integration interval at some finite reference value sref . Then,
substituting ν = exp(s/δf) and applying the method of partial fractions, we obtain

KaT ,u ∼ Kau

(
ηref + (θ + 1)

log(θ + 1)

θ

)
, ηref := sref

δf
, Kau := aδfρ

0
u

m0 , (6.6a)

KaF ,u

Le
∼ Kau

(
ηref + log(θ + 1) +

∫ 1

0

νLe−1

1 + θν
dν

)
, (6.6b)

where Kau is the Karlovitz number in the unburned gas mixture. Note that Kau = (θ + 1)Kab. Next, we have to
derive an expression for 
h from (6.1a). Applying the same assumptions as before, we find


h = cp

(
T 0

b − T 0
u

)(KaF ,u

Le
− KaT ,u

)
+ O(

Ka2
u

)
. (6.7)

Note from relations (6.6), that the Karlovitz integrals diverge, whereas 
h remains bounded for ηref → −∞.
Substituting (6.7) in relation (6.5), we find for the relative change in mu the following expression

mu − m0

m0 = −KaT ,u + Ze

2

(KaF ,u

Le
− KaT ,u

)
+ O(

Ka2
u

)
. (6.8)

Finally, substituting the expressions for the Karlovitz integrals in (6.6) and applying integration by parts to the
integral involved, we can rewrite relation (6.8) in the form

mu − m0

m0 = −Mu(ηref)Kau + O(
Ka2

u

)
, (6.9)

where the Markstein number at the unburned side of the flame is given by

Mu(ηref) = ηref + (θ + 1)
log(θ + 1)

θ
+ Ze

2
(Le − 1)

1

θ

∫ 1

0
νLe−2 log(1 + θν) dν

= ηref + 1

θ + 1
Mb + log(θ + 1). (6.10)

Thus, expressions (4.6) and (5.6) for mb and Mb can be used to determine the influence of flame stretch on the
mass burning rate in the burned gases at the reaction layer η(s) = 0. On the other hand, expressions (6.9) and (6.10)
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for mu and Mu describe what happens in the unburned gases, but as there is no natural position in the unburned
gases, the reference position η = ηref indicates the point where mu is considered. Thus, compared to expression
(5.6) for Mb, this expression contains the additional term ηref , that accounts for the finite thickness of the preheat
zone. Note that the above relation implies that there is a difference between mu and mb, given by

mu − mb

m0 = (−ηref − log(θ + 1))Kau, (6.11)

which is not equal to zero-even if they are evaluated at the same position, i.e., if we choose ηref = 0. The term
proportional to log(θ + 1) is related to the gas expansion in the preheat zone. In the limit of no expansion, i.e.,
θ → 0, relation (6.10) reduces to

Mu(ηref) = ηref + 1 + Ze

2

(
1 − 1

Le

)
= Mb + ηref , (6.12)

which gives identical Markstein numbers and mass burning rates at ηref = 0.

7 A review on the mass burning rate

In this final section we review the relations for the mass burning rate derived in the previous sections. In particular,
we compare it to results obtained with LAEA from literature and show the consistency of our model. Finally, we
will discuss the implications for numerical and experimental studies.

In order to compare our results with literature, we first have to relate our stretch rate K with the classical stretch
rate κ , which is used in flame sheet models, where flames are considered as a single surface separating the burned
and unburned gases. It is defined as the fractional rate of change of the area element on the flame sheet when
it is moving with velocity vf . For a properly defined coordinate system ξ = ξ(x, t) for which the scale factor
h1 = Const, we have

K = κ + 1

ρ

∂ρ

∂τ
, κ := 1

σ

∂σ

∂τ
, (7.1)

with σ defined in (2.5). Since by definition ∂T /∂τ = 0 and ρT = Const by virtue of the equation of state (2.7),
we also have ∂ρ/∂τ = 0, and consequently K = κ . We like to emphasize that this equality only holds at the flame
sheet, since κ is not defined elsewhere. Next, we will reformulate our results in terms of the laminar burning velocity
sL. Assuming weak stretch, so that we can replace ρb by ρ0

b , we obtain at the burned side of the flame

sL,b − s0
L,b

s0
L,b

= −MbKab + O(Ka2
b), Kab := κδf

s0
L,b

, (7.2)

with the Markstein number Mb defined in (4.7) for the constant density approximation and in (5.6) for variable
density. Remember that the superscript 0 refers to the value of the corresponding variable for a stretchless flame.
Relation (7.2) was previously derived by Joulin and Clavin for the constant density case and by Clavin for the
variable density case. However, their Markstein numbers differ slightly from ours. In particular, according to Joulin
and Clavin [16]

Mb = 1 + Ze

2
(Le − 1), (7.3a)
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whereas Clavin obtained the result [7]

Mb = (θ + 1)
log(θ + 1)

θ
+ Ze

2
(Le − 1)

θ + 1

θ

∫ 1

0
ν−1 log(1 + θν) dν. (7.3b)

In their derivations, they considered the flame as a surface separating the (incompressible) burned and unburned
gas mixtures. They first integrated the conservation equations across the reaction zone, to give boundary conditions
and jump conditions for the flow in the (un)burned gas mixtures, which they subsequently solved using asymptotic
expansions. However, in their derivations they had to assume that |Le − 1| = O(1/Ze), so that (7.3a) and (7.3b) are
to lowest order in 1/Ze equal to (4.7) and (5.6), respectively. Our expressions do not suffer from this assumption
and are valid for general Lewis numbers.

Alternatively, at the unburned side of the flame we have

sL,u − s0
L,u

s0
L,u

= −Mu(ηref)Kau + O(Ka2
u), Kau := κδf

s0
L,u

, (7.4)

with the Markstein number Mu(ηref) given in (6.10). A very similar result was obtained by Clavin and Williams
[7]; they found (7.4), with the Markstein number Mu given by

Mu = (θ + 1)
log(θ + 1)

θ
+ Ze

2
(Le − 1)

1

θ

∫ 1

0
ν−1 log(1 + θν) dν. (7.5)

Apart from the small difference in the preferential diffusion term, again due to the fact that Clavin and Williams
had to assume |Le − 1| = O(1/Ze), the term ηref is also missing. This is a consequence of their model, where the
entire flame is considered a surface, i.e., they implicitly take ηref = 0.

This shows indeed that the LAEA theory uses the position s = 0 (at the reaction layer) to identify the unburned
mass burning rate mu as well as the burned mass burning rate mb. This is a direct consequence of the LAEA theory
which assumes that the complete flame structure is viewed as an interface (at s = 0) separating unburned and burned
gases, in contrast with the IA where the flame has a finite thickness. What the LAEA theory implicitly comes down
to is that the asymptotic behavior of m(s) in the (un)burned gases is evaluated and that it is extrapolated linearly
to the position s = 0 to identify the reported results for mb and mu. Or, alternatively, the limit of an infinitely thin
flame is taken, i.e., δf → 0 (reaction zone including preheat zone). This procedure gives different results for mb

and mu (or Mb and Mu), although they are evaluated at the same point.
To understand this difference more clearly, let us now study the variation of m(s) in the flame. We will consider

two cases: as reference we will consider the theoretical model considered in this paper where the preheat zone thick-
ness is infinite, while the reaction zone is infinitely thin (see Fig. 3) and compare this with a numerical simulation
where both the reaction zone and the preheat zone have a finite thickness (see Fig. 4). We can determine the mass
burning rate m(s) from the first flamelet equation in (2.6), that describes conservation of mass. Thus, integrating
Eq. (2.6a) from s = sb = 0, where the infinitely thin reaction zone is situated, to a location s �= 0 in either the
preheat zone or the burned gas mixture, we obtain

m(s) − mb = −a

∫ s

0
ρ0(s′) ds′, (7.6)

where we have replaced ρ by its stretchless counterpart ρ0. Note that we have taken K(s) = a, which is justified
for the complete preheat zone and the burned gas mixture in the vicinity of the reaction layer; see Appendix. In
the burned gas mixture, for s > 0, we may take ρ0(s) = ρ0

b , to find the mass burning rate linearly decreasing with
η(s), i.e.,
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Fig. 3 The (scaled) mass burning rate m(s), its linear approxi-
mationm∗(s) and densityρ(s)of a flame with infinitely thin reac-
tion layer at η(s) = 0 subject to a constant stretch rate K(s) = a
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Fig. 4 The mass burning rate m(s) and the density ρ(s) of
a methane/air flame computed numerically from the flamelet
equations (2.6) using GRI-mech 3.0. Parameter values are:
ϕ = 0.7, a = 10 s−1, δf = 6.22 × 10−2 cm,m0 = 2.13 ×
10−2 g/cm2 s

m(s) − mb

m0 = −Kabη(s), (7.7)

which has been plotted in Fig. 3 (at the right where η(s) > 0). This linear decrease of m(s) in the burned gases can
also be seen in Fig. 4, which presents numerical results for a weakly strained lean methane–air flame (equivalence
ratio ϕ = 0.7, strain rate a = 10 s−1) computed from the full set of conservation equations using GRI-mech 3.0.
Let us next investigate m(s) in the preheat zone, i.e., for −∞ < s ≤ 0. Substituting expression (5.1) for ρ0(s) in
(7.6), we obtain the following relation

m(s) − mb

m0 = Kab(θ + 1)

(
− η(s) + log

(θeη(s) + 1

θ + 1

))
. (7.8)

This relation is plotted in Fig. 3 (at the left where η(s) < 0) and is similar to the numerical results in Fig. 4.
Theoretical and numerical results are almost identical in the complete flame except in the neighborhood of the
reaction zone, as expected. If we now take the limit s → −∞, we recover relation (6.11), as found from the IA
presented in the previous section:

m(s) − mb

m0 ∼ m∗(s) − mb

m0 := Kau
( − η(s) − log(θ + 1)

)
, (7.9)

where m∗(s) is the linear approximation of m(s) in the preheat zone, indicated by the oblique asymptote in Fig. 3.
This means that the mass burning rate m(s) is also linearly varying with η(s) in the preheat zone, sufficiently far
away from the reaction zone. However, substituting η(s) = 0 in the left-hand side of (7.9), we obtain for the mass
burning rate the extrapolated value m∗(0) := mb − log(θ + 1)Kaum

0 �= mb, due to expansion of the gas mixture.
If we next replace the mass burning rate mu by m(sref), and if we take |sref | large enough, we have

mu

m0 ∼ mb

m0 + ( − ηref − log(θ + 1)
)
Kau = 1 − MbKab + ( − ηref − log(θ + 1)

)
Kau + O(Ka2

b)

= 1 − Mu
(
ηref

)
Kau + O(Ka2

u), (7.10)

implying that the relations (4.6) and (6.9) with the Markstein numbers Mb and Mu
(
ηref

)
defined in (5.6) and

(6.10), respectively, are consistent with the flamelet model presented Sect. 2. Finally, if we let the flame shrink to a
surface, i.e., ηref → 0, we recover from (7.9) relation (6.11):
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mu − mb

m0 = − log(θ + 1)Kau. (7.11)

This way, we can define two alternative mass burning rates, one at the reaction zone at s = 0 and one extrapolated
from the unburned gas mixture, and the difference between these is given by (7.11), and only when θ = 0 these are
equal. Alternatively, we can derive (7.11) from the relations (4.6) and (6.9).

Figure 3 clearly shows that the mass burning rate mb in the burned gases gives a more accurate representation of
the mass burning rate of stretched flames, because the extrapolated value m∗(0) deviates considerably from m(0).
One should realize, though, that the reaction zone is in reality not infinitely thin. In case of a finite reaction-zone
thickness, the value for mb describes the asymptotic behavior of m(s) in the burned gases, extrapolated to the heart
of the reaction zone at s = 0, e.g., the position of the maximum heat release. In that case, mb is not exactly on the
m(s)-curve either because m(s) is not completely linear then for s > 0. However, mb is much closer to m(0) than
m∗(0), because the reaction zone is much thinner than the preheat zone. In other words, the ‘error’ in the Markstein
number Mb is of the order of δr/δf = 1/Ze, where δr is the reaction-zone thickness, while it is of the order of 1 in
the Markstein number of the unburnt gas Mu.

A very important question is what can be learnt from this. First of all, it should be noted that, in general, the
laminar burning speed sL at the unburned flame boundary is used as reference value. For instance, in experiments
on spherically expanding flames one often uses Schlieren photography to determine the unburned boundary or
another position in the flame to derive sL or the Markstein number. The above analysis shows that mb is more
appropriate than mu to predict the mass burning rate in the flame structure. We therefore suggest to use the burned
flame boundary instead of the unburned boundary as a reference to determine the mass burning rate in experiments.
If another position is preferred for some reason, one should bear in mind that the use of (6.9) and (6.10) could
lead to inaccuracies. However, accurate predictions of the mass burning rate m(s) at other positions in the flame
structure are possible if we take mb as reference value and apply the correction suggested by (7.9).

8 Conclusions

In this paper we briefly reviewed the flamelet equations for premixed flames, which is a quasi-one-dimensional
system of conservation equations formulated in terms of a curvilinear coordinate system moving with the flame.
The flamelet equations all contain a source term proportional to the stretch rate, which describes transport along
the flame front. Applying the IA to the flamelet equations, we have derived a model relating the mass burning
rate in the burned gas mixture to the stretch rate, involving the so-called Karlovitz integrals, which are weighted
mass-flow rates. The model is quite generally applicable; the only assumptions we made are, first, the flame is
weakly stretched, and second, the reaction zone is infinitely thin.

Next, we have elaborated the model for a flat stagnation flame governed by a one-step irreversible reaction.
Herewith we distinguished two cases, viz. with and without thermal expansion. Assuming constant coefficients,
we could solve the flamelet equations analytically and determine the exact expressions for the Karlovitz integrals.
The resulting expressions for the mass burning rate, and more specifically the Markstein number, reproduce the
well-known expressions obtained with LAEA provided |Le − 1| = O(1/Ze) [7,16]. It should be emphasized,
however, that our model does not rely on the assumption that |Le − 1| � 1 unlike for LAEA.

Alternatively, in case of thermal expansion, we have also determined a model for the mass burning rate at a
reference position in the preheat zone, near the unburned gas mixture. Comparing our result with the expression
obtained via LAEA [7] we have one term extra due to the finite thickness of the flame. This means in fact that
LAEA uses the location of the reaction zone to determine the mass burning rate in both the burned and unburned
gas mixture. Also for our flamelet model, we have two possibilities to define the mass burning rate at the reaction
zone, i.e., the mass burning rate mb at the burned edge of the flame and the mass burning rate m∗(0) extrapolated
from the unburned gas mixtured. It turns out that first choice is the most accurate.

The flamelet model presented in this paper can be extended as follows. First, it can be applied to determine
the mass burning rate of spherically expanding flames. The flamelet equations can still be solved analytically and
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expressions for the Markstein number can be derived. Another possibility would be to apply it to arbitrary flames,
but then the flamelet equations have to be solved numerically and the corresponding Karlovitz integrals have to be
computed numerically as well. Finally, the model can be combined with the G-equation to determine the propagation
of the flame surfaces in combination with a CFD code to compute the flow.

Appendix: The stretch rate of a plane stagnation flame

In this appendix we derive expressions for the stretch rate K(s) of a plane stagnation flame and show that it is nearly
constant in the entire preheat zone and in the burned gas mixture close to the reaction zone, provided the flame
is only weakly stretched. Therefore, we restrict ourselves to weakly stretched flames, i.e., the Karlovitz number
Kab � 1. In this appendix we frequently refer to the parameters δf , Kab and θ , which are defined by (4.1), (4.2)
and (5.1), respectively.

From the momentum equations, describing the two-dimensional stagnation flow in the flame, we can derive the
following differential equation for K [27,28]:

m
dK

ds
− d

ds

(
µ

dK

ds

)
= ρua

2 − ρK2, (9.1)

where µ is the dynamic viscosity of the gas mixture and a the applied strain rate at the unburned side of the flame.
This equation has to be coupled with the flamelet equation (2.6a), with σ(s) = 1, in order to determine K(s) and
m(s). We derive approximate solutions of these equations, separately for the preheat zone and for the burned gas
mixture. Let � be the stand-off distance, i.e., the stagnation plane is located at s = �, and assume that �  δf .
Applying an appropriate scaling to (9.1) and (2.6a), with length scales δf for the preheat zone and � for the burned
gas mixture, respectively, we conclude that in the preheat zone the convective and viscous terms are of comparable
size whereas the stretch terms in both equations are negligible. On the other hand, in the burned gas mixture, the
viscous term is negligible but the stretch terms have to be included. Finally, taking µ constant, replacing m(s) in
the preheat zone by m0, ρu by ρ0

u and ρ(s) in the burnt gas by ρ0
b , we obtain the following set of equations

m0 dK

ds
− µ

d2K

ds2 = 0, −∞ < s < 0, (9.2a)

m
dK

ds
= ρ0

ua2 − ρ0
bK2,

dm

ds
= −ρ0

bK, 0 < s < �, (9.2b)

which we have to solve subject to the following boundary conditions

K(−∞) = a,
dK

ds
(�) = 0, m(�) = 0. (9.2c)

Moreover, we require continuity of K(s), dK
ds

(s) and m(s) at s = 0.
The solution of (9.2a), subject to the first boundary condition in (9.2c), reads

K(s) = a
(

1 + A eη(s)/Pr
)
, η(s) := s

δf
, −∞ < s < 0, (9.3)

where A is a coefficient to be determined later and Pr := µcp/λ is the Prandtl number of the gas mixture. The
solution of (9.2b) is more involved. Combining both equations, we obtain the following differential equation for
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the mass burning rate m:

m
d2m

ds2 −
(dm

ds

)2 + ρ0
uρ0

b a2 = 0. (9.4)

The solution of (9.4), subject to the third boundary condition in (9.2c), can be written in the form m(s) =
−B sin qη(s − �) with B, q > 0, provided Bq/δf = a

√
ρ0

uρ0
b . Substituting this expression in the second equation

in (9.2b), we obtain

K(s) = a
√

θ + 1 cos qη(s − �), 0 < s < �. (9.5)

The solution in (9.3) and (9.5) contains three unknown constants, viz. A, q and �, that we determine from continuity
of K(s), dK

ds
(s) and m(s) at s = 0. This gives the following set of nonlinear equations

1 + A = √
θ + 1 cos qη(�), η(�) = �

δf
, (9.6a)

A = Prq
√

θ + 1 sin qη(�), (9.6b)

m0q = aδfρ
0
b

√
θ + 1 sin qη(�). (9.6c)

Using the Taylor series
√

1 + x = 1 + 1
2x − 1

8x2 + O(x3) for x → 0, we can show that the solution of (9.6), to
first order accuracy, is given by

A = θPrKab + O(Ka2
b), (9.7a)

q = √
θKab + O(Ka2

b), (9.7b)

tan

(
q�

δf

)
= √

θ + O(Ka2
b). (9.7c)

Combining the solutions in (9.3) and (9.5), we have

K∗(s) := K(s) − a

a
=

⎧⎨
⎩

A eη(s)/Pr, −∞ < s < 0,

√
θ + 1 cos q(η(s) − �) − 1, 0 < s < �,

(9.8)

with the parameters A, q and � given in (9.7); see Fig. 5. Clearly, the relative deviation of K(s) from a is at most
2 × 10−2 in the preheat zone. Note that also in the burned gas mixture, close to the reaction layer, K∗(s) is still
small. For example, K∗(s) < 0.1402 for 0 ≤ η(s) ≤ 5. Finally, note that �  δf indeed, as we assumed in the
derivation of (9.2).
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Fig. 5 K∗(s) of a flame with infinitely thin reaction zone at η(s) = 0, in the preheat zone (left) and in the burned gas mixture (right).
Parameter values are: a = 10 s−1, Pr = 0.71, θ = 4, δf = 6.22 × 10−2 cm and Kab = 6.4 × 10−3
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